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The study assessed vegetation health in Iba Oku, a hydrocarbon-impacted
environment, using multi-temporal normalized difference vegetation index (NDVI)
and enhanced vegetation index (EVI) derived from Landsat imagery for 2000, 2012
and 2024. Vegetation stress was evaluated using descriptive statistics, supervised
land cover classification, trend direction, and spectral signature assessment.
Results revealed a marked decline in vegetation condition between 2000 and 2012
(NDVI and EVI declined by approximately 164% and 500%, respectively), followed
by a weak recovery in 2024 (about 156% and 42% by NDVI and EVI, respectively).
In 24 years, bare ground increased by 21.81% using NDVI and 22.10% using EVI,
while stressed vegetation increased by 24.44% and 25.23% using NDVI and EVI,
respectively. Spectral trends and linear projection suggested continued vegetation
stress if current environmental pressures persist. The findings demonstrate the
value of integrating multiple vegetation indices and spectral information for long-
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term vegetation health assessment in hydrocarbon-impacted environments and
underscore the need for pollution control and sustainable land use planning to
support vegetation recovery.
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1. INTRODUCTION

Hydrocarbon seepage occurs when oil and gas migrate from subsurface reservoirs to the Earth’s surface
through fractures, faults, and permeable geological structures under high pressure (Shi et al., 2011;
Okereke and Anyadiegwu, 2019; Enoh et al., 2022). This process, often described as the chimney effect,
is widely recognized as a major environmental concern because of its negative effects on soil quality,
vegetation health, and ecosystem stability (Ebele et al., 2013). Hydrocarbon seepage is commonly
classified as active or passive. Active seepage involves continuous migration of oil and gas to the surface
and is often detectable through geophysical anomalies. Passive seepage refers to areas where
hydrocarbons are present but migrate slowly or intermittently, producing subtle surface expressions. Both
forms can induce vegetation stress that is detectable through changes in spectral reflectance (Abrams,
2005; Schumacher, 2002). In seepage-affected environments, hydrocarbons alter soil chemistry and
reduce oxygen availability within the root zone. These changes restrict water and nutrient uptake by plants
and lead to chlorosis, reduced growth, and eventual vegetation decline (Schumacher, 2001; David et al.,
2017; Enoh et al., 2022). Prolonged seepage can also result in the loss of fertile soils, contamination of
surface and groundwater, and disruption of local ecosystems (Aghalino, 2000; Alrowais et al., 2023).
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Remote sensing and geographic information system provides effective, non-invasive tools for monitoring
vegetation stress associatedwith hydrocarbon contamination. Unlike conventional geochemical and
geophysical methods, remote sensing offers broad spatial coverage, reduced cost, and the ability to monitor
environmental change over long time periods (Lyon et al., 1998; Okereke and Anyadiegwu, 2019).
Vegetation indices derived from satellite imagery are particularly useful for detecting stress-related changes
in plant condition.

The Normalized Difference Vegetation Index (NDVI) has been widely applied in oil spill and seepage studies
due to its effectiveness in distinguishing healthy vegetation from stressed vegetation and bare surfaces
(Schumacher, 2001; Wilton, 2021). NDVI responds strongly to reductions in chlorophyll content and near-
infrared reflectance caused by hydrocarbon-induced stress (Jamaludin et al., 2015). However, NDVI alone
may be limited in areas with dense vegetation or atmospheric interference. The Enhanced Vegetation Index
(EVI) addresses some of these limitations by incorporating the blue band to reduce atmospheric influences
and improve sensitivity in high-biomass regions (Huete et al., 2002).

Although numerous studies in the Niger Delta have relied predominantly on NDVI for assessing vegetation
impacts of oil pollution (Okereke and Enoh, 2016; Adamu et al., 2018; Erebi and Davidson, 2023; Afifi,
2015; Adamu et al., 2021), comparatively few have integrated EVI (Adamu et al., 2015)and spectral
signature analysis within a multi-temporal framework. This study addresses this gap by combining NDVI,
EVI, supervised classification, and spectral analysis to provide a robust, spatially explicit assessment of
vegetation response to hydrocarbon seepage in Iba Oku, Akwa lbom State, Nigeria.

2. MATERIALS AND METHODS

This study used geospatial methods that combine remote sensing and geographic information systems to
examine how hydrocarbon seepage affects vegetation health in Iba Oku. The study followed three main
steps: data collection, image pre-processing and data analysis. These steps were carefully applied to
ensure accurate, consistent and reliable results across all time periods studied. This approach enabled the
comparison of vegetation conditions before, during, and after the seepage occurred in the study area.

2.1 Study area

The study was conducted in Iba Oku, located within the Uyo Local Government Area of Akwa Ibom State,
Nigeria (Fig. 1). Iba Oku lies within the Niger Delta region and forms part of the Oku clan in Uyo. The area
is situated between latitudes 5° 03' — 5° 05' N and longitudes 7° 55' — 7° 57' E, covering approximately 90.2
km2. Land use in the area is predominantly agricultural, with scattered built-up areas, water bodies, sand
quarry sites and forested zones. The terrain is generally flat and underlain by coastal plain sediments. The
climate is characterized by a warm, humid wet season and a hot, dry season. According to the 2006 national
census, Iba Oku has an estimated population of about 2,580 people.
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Figure 1. Map of the Study Area

2.2 Data Acquisition

Both primary and secondary data were used. Primary data included Global Navigation Satellite System
(GNSS) coordinates of observed hydrocarbon seepage locations and field photographs collected during
site visits. GNSS measurements were acquired with sub-meter positional accuracy. Secondary data
consisted of multi-temporal Landsat imagery: Landsat 7 ETM+ (2000), Landsat 8 OLI/TIRS (2012), and
Landsat 9 OLI/TIRS-2 (2024), obtained from the United States Geological Survey (USGS). Additional data
included Google Earth imagery and relevant literature. Landsat datasets were selected due to their
consistent spectral characteristics, 30 m spatial resolution, and suitability for vegetation monitoring over
long temporal scales. Landsat 7 has eight spectral bands (including a panchromatic band) with 30m
resolution for multispectral bands and 15m for panchromatic. Landsat 8 captures eleven spectral bands,
including new coastal aerosol and cirrus bands, with 30m resolution (15m for panchromatic), and Landsat
9 offers similar spectral and spatial characteristics as Landsat 8 but with improved radiometric calibration.
Images were acquired during periods of minimal cloud cover to ensure data quality. For this study, Landsat
images acquired on 20t December 2000, 17t January 2012 and 23 December 2024 were used. A Shuttle
Radar Topographic Mission (SRTM) digital elevation model was used to support spatial referencing

Table 1. Data Acquired for the Study and Sources

S/ Data Type Source Path/Ro Format Scale/Re Date
N w solution

1 Landsat 7 ETM+ Secondary USGS 188/57 Digital 30m 2000
2 Landsat 8 Secondary USGS 188/57 Digital 30m 2012

TIRS/OLI
3 Landsat 9 TIRS/OLI Secondary  USGS 188/57 Digital 30m 2024
4 Google Earth Image Secondary  Google Digital 15m 2024
Earth
5 GNSS Coordinates  Primary Field Work Digital  £5cm 2024
6 Pictures Primary Field Work Digital 50MP 2024
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Figure 2. Seepage Area, (Iba Oku, Uyo)

2.3 Image Pre-processing

Landsat images used in this study were level-1 terrain-corrected (L1T) data. Although L1T data undergo
systematic radiometric calibration, geometric correction, and terrain correction, these processes are limited
to sensor-level and geometric adjustments. Atmospheric effects remain uncorrected, and additional pre-
processing such as atmospheric correction, is required before the data can be reliably used for quantitative
surface reflectance analysis and multi-temporal change detection. Atmospheric correction refers to the
process of adjusting the recorded satellite imagery to account for atmospheric effects and obtain accurate
measurements of the Earth’s surface. The equations for atmospheric correction of Landsat images from
Digital Number (DN) to Top of Atmosphere (TOA) reflectance using reflectance re-scaling coefficients from
the Landsat metadata file are provided in Equations (1) and (2).

TOA reflectance without correction for solar angle (pA’) can be calculated using Equation (1):
pA=Mp.Qcal+Ap Equation (1)
Where pA represents TOA planetary reflectance, Mp is the band-specific multiplicative re-scaling factor, Ap
is the band-specific additive re-scaling factor, and Qcal refers to the quantized and calibrated standard
product pixel values (DN).

TOA reflectance corrected for the sun angle can be calculated using Equation (2):

pA' = (pA)/cos(8sz) = (pA)/cos(bse) Equation (2)
Where 6sz represents the solar zenith angle, while Bse represents the solar elevation angle.

In this study, the Landsat images were corrected atmospherically using the fast line-of-sight atmospheric
analysis of hypercubes (FLAASH) in ENVI.

2.4 Computation of Vegetation Indices

Vegetation health was assessed using the Normalized Difference Vegetation Index (NDVI) and the
Enhanced Vegetation Index (EVI) for the three years. NDVI was computed using read and near-infrared
reflectance to indicate vegetation vigour and photosynthetic activity. EVI incorporated the blue band to
improve sensitivity in areas with dense vegetation and atmospheric interference. Both indices served as
indicators of vegetation stress potentially induced by hydrocarbon seepage.

NDVI is expressed as shown in Equation (3).

NDVI= NIR-R
NIR+R

Where NIR (Near-Infrared) and R (Red)

Equation (3)

For Landsat 7, NDVI was computed using Bands 4 (NIR) and 3 (Red), while for Landsat 8 and 9, NDVI was
computed using Bands 5 (NIR) and 4 (Red).
EVI is calculated as shown in Equation (4).
. 25(NIR-R) .
EVE= (NIR+6R-7.5B+1) Equation (4)

Where NIR (Near-Infrared), R (Red) and B (Blue)
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For Landsat 7, EVI was computed using Bands 4 (NIR), 3 (Red) and 1 (Blue), while for Landsat 8 and 9,
EVI was computed using Bands 5 (NIR), 4 (Red), and 2 (Blue).

NDVI and EVI are designed to standardize vegetation index values to a range between -1 and +1, providing
a measure of the health of vegetation within a pixel. Values between -1 and 0.3 indicate poor vegetation
status; 0.3 to 0.5 indicate normal vegetation conditions, and 0.5 to 1.0 indicate a healthy condition.

2.5 Land-Cover Classification

Supervised land-cover classification was performed using the Maximum Likelihood Classification algorithm
in ArcMap. Three classes were defined: unstressed vegetation, stressed vegetation, and bare ground.
Training samples representing stressed vegetation, unstressed vegetation, and bare land were selected
based on spectral characteristics and visual interpretation. Spectral signatures were generated for each
class, and pixels were assigned based on probability density functions. Classified outputs were converted
to vector format to quantify areal coverage. Check Table 8 for the classification statistics.

2.6 Spectral Signature Analysis and Simulation

Spectral signatures for stressed and unstressed vegetation were extracted for 2000, 2012 and 2024.
Changes in reflectance, particularly in the read and near-infrared regions were analyzed to assess
vegetation response to seepage. A spectral projection for 2036 was generated using linear regression and
python based on temporal reflectance trends (using the data in Table 2). The simulation provided insight
into potential future vegetation conditions if seepage persists.

Table 2. Input Data for Simulation

Year 450 nm 550 nm 650 nm 700 nm 850 nm 950 nm
2000 0.07 0.1 0.08 0.12 0.26 0.18
2012 0.09 0.12 0.1 0.13 0.22 0.15
2024 0.13 0.16 0.14 0.17 0.18 0.12

Sample Python code used for the prediction is as follows:
Wavelengths = [450, 550, 650, 700, 850, 950]

reflectance_2000 = [0.07, 0.10, 0.08, 0.12, 0.26, 0.18]
reflectance_2012 = [0.09, 0.12, 0.10, 0.13, 0.22, 0.15]
reflectance_2024 = [0.13, 0.16, 0.14, 0.17, 0.18, 0.12]

Years = np.array([[2000], [2012], [2024]])
reflectance_all = np.array([reflectance_2000, reflectance_2012, reflectance_2024])

predicted 2036 =]

for i in range(len(wavelengths)):
y = reflectance_all[:, i]
model = LinearRegression().fit(years, y)
prediction = model.predict([[2036]])
predicted_2036.append(prediction[0])

3. RESULTS

3.1 NDVI Analysis of Vegetation Health and Stress (2000 — 2024)

The NDVI statistics in Table 3 show a clear decline in vegetation health in the study area over the study
period. In 2000, the mean NDVI value was 0.14, which indicates sparse but functional vegetation cover
with a maximum NDVI of 0.45. In 2012, the mean and maximum NDVI dropped sharply to -0.09 and 0.38,
respectively, indicating severe vegetation stress. By 2024, the mean NDVI slightly increased to 0.05, but
this value remained low, indicating weak vegetation recovery as shown by the continuous decline in the
maximum NDVI for 2024. These results signify a progressive decline in vegetation biomass and greenness
between 2000 and 2024. The NDVI classification results in Table 4 confirm this trend. This pattern shows
continuous vegetation degradation and land exposure. Unstressed vegetation decreased from 51.36% in
2000 to 39.74% in 2024. At the same time, bare ground expanded from 10.59% to 12.90%. It's observed
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that a slight increment in the NDVI in 2024 (Table 3) causes a corresponding decrease in the amount of
stressed vegetation and bare ground by 0.03% and 0.05%, respectively (Table 4). This confirms that NDVI
is sensitive to chlorophyll content and vegetation density.

Table 3. Descriptive statistics for NDVI values during 2000 — 2024

Year Min Max Mean Standard deviation
2000 -0.19 0.45 0.14 0.05
2012 -0.20 0.38 -0.09 0.02
2024 -0.22 0.35 0.05 0.01

Table 4: NDVI Vegetation Stress classification results of Iba Oku

Vegetation Health 2000 2012 2024
Area % Area % Area %
(km2) (km2) (km2)
Bare ground 9.55 10.59 11.68 12.95 11.64 12.90
Stressed 34.32 38.05 42.68 47.32 42.71 47.35
Unstressed 46.33 51.36 35.84 39.73 35.85 39.74
Total 90.2 100 90.2 100 90.2 100

NDVI maps for the study periods (Figure 3) clearly depict these temporal differences, highlighting visible
reductions in healthy vegetation in the study area.
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Figure 3. NDVI vegetation stress level in 2000, 2012, and 2024

3.2 EVI Analysis of Vegetation Health (2000 — 2024)

Table 5 shows the descriptive statistics for EVI. In 2000, the maximum and mean EVI were 0.12 and 0.15,
respectively, indicating relatively good vegetation vigour. In 2012, the maximum and mean EVI dropped
sharply to -0.51 and -0.60, showing severe vegetation stress. In 2024, while the mean EVI improved slightly
to -0.35, the maximum EVI yet dropped to -0.48, indicating unhealthy vegetation conditions. In Table 7, the
abstract EVI index values are translated into meaningful vegetation stress classes. Unstressed vegetation
declined from 51.21% in 2000 to 39.25% in 2024, while stressed vegetation increased to over 47%. Bare
ground increased gradually from 11.22% in 2000 to 13.70% in 2024. EVI values measure substantial
vegetation degradation rather than temporary seasonal effects. This explains why a temporary increase in
the mean EVIin 2024 in Table 5 didn’t produce any corresponding effect on the vegetation classes in Table
6 as experienced in the case of NDVI. The negative EVI values suggest severe structural degradation of
vegetation consistent with hydrocarbon stress since it is more sensitive to canopy structure and biomass.
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Table 5. Descriptive statistics for EVI values during 2000 — 2024.

Year Min Max Mean Standard deviation
2000 -0.69 0.12 0.15 0.13
2012 -0.78 -0.51 -0.60 0.05
2024 -0.24 -0.48 -0.35 0.03

Table 6. EVI Vegetation Stress classification results of Iba Oku

Vegetation 2000 2012 2024
Health
Area (km?) % Area (km?) % Area (km?) %
Bare ground 10.12 11.22 11.86 13.15 12.36 13.70
Stressed 33.89 37.57 42.08 46.65 42.44 47.05
Unstressed 46.19 51.21 36.26 40.20 35.40 39.25
Total 90.2 100 90.2 100 90.2 100

Spatial EVI maps for the study periods (Figure 4) clearly depict vegetation degradation in the study area.
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Figure 4: EVI vegetation stress level in 2000, 2012 and 2024

3.3 Relationship between NDVI and EVI (2000 — 2024)

The Pearson correlation coefficient between NDVI and EVI across all three study years 0.95 (Table 7). This
indicates a very strong positive relationship between both indices. This also indicates that both indices
respond similarly to vegetation changes in the study area, especially in 2012 during the extreme vegetation
stress. NDVI and EVI exhibit similar temporal behaviour, confirming their strong positive relationship.
However, EVI shows greater sensitivity to vegetation degradation during periods of severe stress. This
shows its suitability for assessing structurally damaged vegetation in hydrocarbon-impacted environments
(Fig. 5). In Figure 6, the percentage distribution of vegetation health classes derived from both NDVI and
EVI are compared, and the progressive loss of healthy vegetation cover for 24 years due to hydrocarbon
toxicity and land degradation is presented. The similarity in their percentage patterns shows that the
observed degradation is real and systematic, not an artefact of one index.

Table 7: Pearson correlation

NDVI EVI
Mean 0.033 -0.267
Variance 0.013 0.146
Observations 3 3
Pearson Correlation 0.950
Ekom et al, 2025 JOGER 8(2)

198


http://unilorinjoger.com/
https://doi.org/10.63745/joger.2025.12.30.011

ISSN 2682-681X (Paper), ISSN 2705-4241 (Online) | http://unilorinjoger.com | https://doi.org/10.63745/joger.2025.12.30.017

0.2

© HE
0

|
0.1 2000 -) 20
0.2
03

-0.4
-0.5
-0.6
-0.7

ENDVI mEVI
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Figure 6. Percentage change in vegetation classes for the study periods

3.4 Spectral Signature Analysis and Prediction for 2036

The spectral signature (Figure 7) shows that unstressed vegetation consistently had higher reflectance in
the near-infrared bands (850—950 nm) than stressed vegetation. Healthy vegetation reflects strongly in the
near-infrared due to intact leaf structure. The reduced reflectance observed in stressed vegetation indicates
damage to leaf cells and reduced chlorophyll content. In 2000, reflectance patterns indicated healthy
vegetation, with no significant evidence of stress, consistent with the absence of seepage during this period.
In 2012, both stressed and unstressed vegetation showed reduced reflectance across wavelengths, with
stressed vegetation displaying markedly lower near-infrared (NIR) reflectance, signalling vegetation
degradation. In 2024, reflectance values for stressed vegetation showed a drastic decline across all
wavelengths, with pronounced reductions in NIR reflectance, indicating severe structural and biochemical
deterioration attributable to hydrocarbon seepage.
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Figure 7. Spectral Signature of stressed and unstressed vegetation in 2000, 2012 and 2024

The linear regression prediction for 2036 shows further reduction in near-infrared reflectance (Fig. 8). This
suggests that vegetation stress may intensify if current environmental conditions continue. Reduced near-
infrared reflectance is a recognized indicator of long-term vegetation stress linked to soil contamination and
ecological disturbance.
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Figure 8. Spectral Signature Prediction for 2036

3.5 Classification Accuracy

The accuracy assessment shows producers’ and users’ accuracies above 80% across all years (Table 8).
This confirms that the observed vegetation changes are reliable and not due to classification errors. High
classification accuracy strengthens confidence in the detected trends. The overall classified accuracy for
2000, 2012, and 2024 were 80.6%, 82.6% and 85.7%, respectively, while the Kappa statistics were 0.8,
0.8, and 0.9 for 2000, 2012, and 2024, respectively.
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Table 8. Accuracy Assessment for Land-Cover Classifications using MLC algorithm

Vegetation Stress Number of Number of Total Producer’s User’s
correctly incorrectly Number of Accuracy or Accuracy
classified classified test pixels class (%)
test pixels test pixels Accuracy

(%)

2000 Classification

Bare-ground 50 1 51 100 98

Unstressed 46 3 49 98 94

Vegetation

Stressed Vegetation 46 9 55 92 84

2012 Classification

Bare-ground 40 1 41 100 98

Unstressed 41 0 41 98 100

vegetation

Stressed Vegetation 49 1 50 98 98

2024 Classification

Bare-ground 50 1 51 100 98

Unstressed 40 1 39 98 100

Vegetation

Stressed Vegetation 25 1 26 100 100

4. DISCUSSION

The results demonstrate a long-term decline in vegetation health in Iba Oku, with the most severe
degradation occurring between 2000 and 2012 (the mean NDVI and EVI declined sharply by approximately
164% and 500%, respectively). The limited recovery observed by 2024 (about 156% and 42% by NDVI and
EVI respectively) suggests that vegetation structure and biomass remain compromised. Despite the weak
recovery in 2024, the NDVI and EVI values remained lower than baseline conditions recorded in 2000.
Using NDVI, bare ground increased by 21.81% while stressed vegetation increased by 24.44% between
2000 and 2024. Conversely, bare ground and stressed vegetation increased by 22.10% and 25.23%
respectively between 2000 and 2024 using EVI. EVI indicates extreme degradation than NDVI due to its
sensitivity to canopy loss and biomass reduction. Also, recovery is weaker in EVI than NDVI implying that
vegetation structure did not recover as much as greenness. Both NDVI and EVI exhibited negative slope
which indicates a consistent decline in vegetation condition across the study area for 24 years. These trends
align with previous studies in the Niger Delta that reported declining NDVI and other vegetation indices in
areas affected by oil pollution and environmental disturbance (Adebangbe, 2025, Kuta et al., 2025).

Spectral signatures show that healthy vegetation reflected more near-infrared light than stressed
vegetation. The predicted reduction in near-infrared reflectance for 2036 suggests that vegetation stress
will continue if current environmental pressures persist. Reduced near-infrared reflectance is a known
indicator of deteriorating vegetation condition due to soil contamination and ecological stress. These results
match findings from comparable research in the Niger Delta where vegetation indices have been used to
qguantify oil spill impacts and broader degradation processes (Asadzadeh and de Souza Filho 2017;
Adebangbe, 2025).

Hydrocarbon seepage and oil spills are well-established drivers of vegetation degradation in the Niger Delta
(Adebangbe, 2025, Mohamadi et al., 2015, Erebi and Davidson, 2023, Akpoghelie, 2021, Adamu et al.,
2021). While hydrocarbon seepage is a key driver of vegetation stress, other factors such as agricultural
intensification, land-use change, and soil degradation likely contribute synergistically. Soil degradation from
continuous cropping and monoculture has been linked to loss of vegetation cover and soil fertility in Niger
Delta soils. Although specific hydrocarbon contamination data were not measured in this study, degraded
soil quality from both agricultural pressure and hydrocarbon seepage can synergistically suppress
vegetation growth. Land use changes also affect vegetation health. Expansion of farming, bush burning,
and shortened fallow periods degrade soil quality and reduce vegetation cover. These practices expose
soil and increase the spatial extent of bare ground. Studies in the Niger Delta and nearby regions highlighted
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that agricultural expansion and land conversion influence vegetation cover and can exacerbate stress
detected by NDVI and EVI ((Phil-Eze et al., 2021, Agumagu et al., 2025).

5. CONCLUSION

This study evaluated vegetation health in Iba Oku, a hydrocarbon-impacted area using multi-temporal NDVI
and EVI between 2000 and 2024. The results revealed a pronounced decline in vegetation condition with
severe degradation observed between 2000 and 2012 and only limited recovery in 2024. Both vegetation
indices showed consistent temporal patterns confirming their reliability for monitoring vegetation health.
However, EVI exhibited stronger sensitivity to degradation, indicating substantial loss of vegetation
structure and biomass within the study period. Vegetation stress classification further demonstrated a
progressive increase in stressed vegetation and bare ground, accompanied by a marked reduction in
healthy vegetation cover. Spectral signature analysis supported these findings showing declining near-
infrared reflectance consistence with stressed and degraded vegetation. The observed vegetation
degradation reflects the combined effects of hydrocarbon seepage, land use change, and agricultural
disturbance within the study area. The study highlights the effectiveness of integrating multiple vegetation
indices and spectral information for assessing long-term ecological change in oil-producing regions. The
findings underscore the need for improved pollution control and sustainable land-use practices to support
vegetation recovery and healthy environment in the Niger Delta.
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