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ABSTRACT 
This research, conducted in Ekiti state, aimed to identify the optimal location for a wind farm 

using a Geographic Information System (GIS) -based machine learning approach. Predictive 

models, specifically Support Vector Machine (SVM) and Random Forest (RF), were 

employed to enhance the accuracy of wind farm site selection. Six factors were utilized to 

create training and testing datasets for model verification and validation. The validation 

process, using the Area under the Curve (AUC) metric, yielded AUC values of 0.75 for SVM 

and 0.8 for RF. The findings indicate that the Random Forest model demonstrated superior 

predictive capability. In conclusion, the integration of GIS and machine learning, 

particularly employing the Random Forest algorithm, proved to be effective in assessing the 

potential for wind farm sites in the research area. 

Keywords: Geographic Information System, machine learning, predictive model, Support 

Vector Machine, Random Forest, Area under Curve. 

1.  Introduction 
Energy stands as a crucial driver for global economic and industrial advancement. 

The predominant share of the world's energy consumption is derived from conventional fossil 

fuels such as oil, gas, and coal. (SeyedAlavi et al, 2022). The primary drawbacks of fossil 

fuels, including the generation of environmental pollutants, limited availability, and elevated 

costs, have prompted numerous governments to explore alternative energy sources. Among 

these alternatives, renewable energy sources stand out, as they offer a clean and limitless 

supply in various regions across the globe without the associated drawbacks of pollution and 

finite reserves. (Moltames et al, 2022). 

Given the growing focus on environmental concerns, the pursuit of clean energy, exemplified 

by wind and solar energy, is at the forefront of the energy revolution. Solar energy, in 

particular, has witnessed rapid and substantial development. (Yang et al., 2019). Wind power 

has garnered significant attention due to its abundant resources and efficient technology for 

power generation. (Liu et al., 2016). Because of the intermittent characteristics of wind and 

solar energy, standalone wind and photovoltaic (PV) energy systems typically necessitate 
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energy storage devices or additional generation sources to establish a hybrid system. The 

storage device may take the form of a battery bank, supercapacitor bank, superconducting 

magnetic energy storage (SMES), or a fuel cell (FC)–electrolyzer system. (Wang and Nehrir 

2008). 

Forecasting wind power poses a significant challenge due to the weather-dependent nature 

of wind speed, characterized by high instability, randomness, and volatility. The inherent 

instability and uncontrollable nature of wind flows contribute to strong randomness in short 

periods. This random behavior in wind power generation creates an imbalance between 

power generation and consumption, leading to increased costs and unpredictability for users 

of this energy. Consequently, accurate prediction of wind power becomes crucial for 

effective energy management, including tasks such as appropriate generation, distribution, 

transmission, planning, and scheduling. (Yurek et al., 2021) 

The significant benefit of wind energy lies in its capacity to deploy wind turbines in areas 

distant from traditional electricity grids. Additionally, it can function as an alternative energy 

source during periods of peak demand. (Moltames et al, 2022). 

A Geographic Information System (GIS) serves as a robust tool for decision-making across 

diverse business sectors, given its capability to analyze environmental, demographic, and 

topographic data. The data intelligence derived from GIS applications is instrumental in 

aiding companies, industries, and consumers in making well-informed decisions. Using 

digital thematic maps and a conceptual model for data integration, GIS minimizes human 

error and efficiently identifies optimal locations for wind farms. The selection of suitable 

sites for wind farm installation hinges on factors encompassing environmental, technical, 

geographical, and theoretical parameters. (Moltames et al., 2022). 

Selecting an appropriate site for the installation of wind farms poses a significant challenge 

in the development of wind resources. Geographic Information System (GIS) has emerged 

as a widely employed Decision Support System (DSS) to effectively identify and assess 

suitable locations for the establishment of wind farms. (Moltames et al., 2022). Utilizing 

Geographic Information System (GIS) as a Decision Support System (DSS) proves 

invaluable by supplying extensive spatial data for decision-making processes related to the 

assessment and development of wind resources. 

Moreover, precise wind power prediction enhances the utilization of wind energy. Machine 

learning (ML) has emerged as a pivotal player in the energy sector. ML techniques are 

extensively employed to analyze historical data, enabling accurate predictions of future wind 

power generation. This utilization of ML contributes to enhanced forecasting performance in 

the realm of wind power generation. (Yurek et al., 2021). Wind power prediction methods 

can be categorized into deterministic prediction and probabilistic prediction. The majority of 

methods fall under deterministic prediction, offering specific predicted values at particular 

times. Common evaluation indices for these deterministic predictions include mean absolute 

error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), 

among others. Classical prediction models like support vector machines (SVM) and artificial 
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neural networks (ANN) are extensively applied in deterministic wind power predictions. (Li 

et al., 2020)  

The SVM (Support Vector Machine) model is considered ideal for wind power prediction 

due to its remarkable learning ability, especially when dealing with limited sample data. 

Consequently, the SVM is selected as the foundational model for wind power prediction in 

this study. It's worth noting that the selection of parameters plays a crucial role in influencing 

the prediction performance of the SVM model. (Li et al., 2020). 

 
Figure 1: The study area map, Ekiti State 

 

2.  Study Area 
The research area under consideration is Ekiti State, situated in the southwestern 

region of Nigeria (refer to Figure 1). Ekiti State is positioned between Latitudes 7° 25′ to 8° 

5′ N and Longitudes 4° 45′ to 5° 45′ E, covering an approximate land area of 5435 km². 

Predominantly an upland zone, the state exhibits elevations ranging from 250 to 540 m above 

mean sea level (a.m.s.l.). The climate in Ekiti State is tropical, characterized by two distinct 

seasons: a rainy season extending from April to October and a dry season spanning November 

to March. The state experiences high humidity levels, and the mean air temperature fluctuates 

between 21 and 28 °C. (Olorunfemi et al., 2020). The study area encompasses a diverse 

landscape, comprising both urban and rural components, along with vegetated and non-

vegetated areas. Ekiti State has undergone notable changes in land use and land cover 

(LULC). The population in the region has witnessed consistent growth, escalating from 1.63 

million in 1991 to 2.38 million in 2006. Projections indicate a further increase to 
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approximately 3.17 million by the year 2015. This demographic trend suggests ongoing 

urbanization and potential alterations in the distribution of land use and land cover within 

Ekiti State. (ekitistate.gov.ng; citypopulation.de, retrieved 2018, Feb. 6). As of 2015, Ekiti 

State recorded a population density of 498.19 individuals per square kilometer. This was 

associated with an annual growth rate of +3.13% during the period from 2006 to 2015 

(source: citypopulation.de, retrieved on February 6, 2018). The steady rise in the human 

population has been a driving force behind significant changes in the Land Use and Land 

Cover (LULC) patterns within the study area. This demographic shift is likely contributing 

to alterations in the landscape and the utilization of land for various purposes. (Olorunfemi 

et al., 2020)  

 

3.  Methodology 
To map suitable sites for wind farm construction in Ekiti State, we adopted the 

methodology presented in Figure 2 

3.1 Data Collection 

The research approach involves leveraging a comprehensive dataset that encompasses 

various factors influencing the planning of wind project placement. The collected data spans 

across socioeconomic, environmental, and technical parameters, as outlined in Table 1. This 

multifaceted dataset is likely crucial for conducting a holistic assessment and identifying 

suitable sites for wind farm construction in Ekiti State. The integration of these diverse 

parameters reflects a thorough and inclusive methodology aimed at making well-informed 

decisions regarding wind energy project locations. 

Table 1: The data used in the study 

Data File Format 

Wind Speed Grid 

Digital Elevation (STRM) Grid 

Landsat 9 Grid 

Road  Network Shapefile 

Settlements Shapefile 

River Network Shapefile 

 

The study was initiated by preparing a wind farm plant map, utilizing wind speed data 

obtained through a raster area that classified wind speed into two classes based on their rates. 

A total of 5 geo-environmental factors, namely Elevation, Slope, Road network, River 

network, Settlements, and Land Use/Land Cover, were selected based on a comprehensive 

literature review. 

The processing of these factors was executed in R-Studio, a statistical computing and 

graphics environment. Two modeling techniques, namely Support Vector Machine (SVM) 

and Random Forest (RF), were employed and subsequently compared. To train these models, 
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70% of the borehole data was utilized, and the accuracy of the models was validated using 

the remaining 30% of the wind speed data. 

The model outputs were exported as raster files, and the Accuracy under the Curve (AUC) 

was calculated to assess the performance of the SVM and RF models. This approach, 

involving a combination of spatial analysis, machine learning, and validation techniques, 

provides a robust framework for identifying suitable sites for wind farm construction based 

on a comprehensive set of geo-environmental factors and wind speed data. 
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3.2  Criteria for Wind site selection 

3.2.1  Wind Speed  

The primary determinant for selecting the site for a wind power plant was the wind 

speed. Most wind turbines commence operation with optimal efficiency at 3 m/s and cease 

operation at a speed of 25 m/s. Wind speeds exceeding 3.5 m/s were deemed favorable. 

Consequently, the initial step involved excluding locations where winds speed of 3.5 m/s or 

higher was not expected. (Benti et al 2023). 

3.2.2  Distance to Settlement  

The proximity of wind power plants to human settlements can have adverse effects 

on the local population. Issues such as noise pollution from wind turbine operations, the 

undesirable effects of shadow flickers on residents, a reduction in wind speed, and the 

potential hindrance to the development of future residential areas underline the importance 

of maintaining a reasonable distance from inhabited areas. To mitigate environmental harm, 

it is recommended to observe a maximum distance of 7.5 kilometers between wind power 

plants and settlement areas. This guideline aims to safeguard the well-being of local 

communities and minimize the negative impacts associated with wind energy infrastructure. 

(Benti et al., 2023). 

 

 
         Figure 3 (A)                   (B)                           Figure 4 (A)                      (B) 

Figure 2: (A) shows the settlement distribution of the study area. Figure 3:(A) shows the 

slope percentage of the study area, 

(B) Shows the wind distribution of the study area in December 2023. (B) Shows the land use 

and land cover of the study area  

 

3.2.3  Distance from Roads 

The ideal location for wind farms is considered to be as close as possible to main 

roads. This proximity aims to minimize various discomforts, including the negative impact 

on road mobility due to loud noises and changes in the visual scene caused by the rotation of 

wind turbines during operation. Additionally, locating wind farms near main roads is seen as 

advantageous for reducing transportation costs and facilitating easier access for various 

employees. To implement this criterion, various studies suggest that the minimum distance 
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between wind farm projects and main roads should be 1.67 km. This distance serves as a 

guideline to strike a balance between maximizing the benefits of wind energy generation and 

minimizing potential adverse effects on road infrastructure and visual aesthetics. (Benti et 

al., 2023).  

3.2.4  Distance from rivers  

Water bodies such as rivers, lakes, and wetlands are considered unsuitable for hosting 

wind farm sites due to their vital ecological services. These bodies of water hold significant 

ecological and economic value, often serving as habitats for diverse flora and fauna species. 

To enhance the safety of wind farm facilities, it is recommended to maintain a considerable 

distance from riverbeds. This precaution is essential as river routes are dynamic, subject to 

constant changes, and there is a potential risk of flooding. 

As a guideline, renewable energy projects should not be constructed within 300 meters of 

water bodies. In this study, a protective buffer of 0.6 kilometers was established around water 

bodies, ensuring that the areas proximate to these buffered watercourses were excluded from 

the study area. This approach aims to respect and protect the ecological and dynamic nature 

of water bodies while avoiding potential hazards associated with flooding or other changes 

in river dynamics. (Benti et al., 2023).  

3.2.5  Slope  

The slope of the terrain is a critical technical factor that requires careful consideration 

in the selection of wind farm sites. Steep slopes pose challenges for access, leading to 

increased costs for maintenance and equipment installation. In the establishment of wind 

farms, flat and low-slope areas are often recommended to mitigate the challenges associated 

with construction. Regions with a slope exceeding 10% are excluded from the final suitability 

map. This exclusion ensures that areas with steep slopes, which can be difficult to navigate 

and construct wind farms on, are not considered suitable for development. By focusing on 

flat and low-slope terrain, the aim is to enhance accessibility, reduce construction 

complexities, and ultimately optimize the efficiency and cost-effectiveness of wind farm 

projects. (Benti et al., 2023).  

 
Figure 4:(A) shows the Road Network of the study area, 

(B) shows the River Network of the study area. 
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3.2.6  Land use/land cover (LULC)  

Land use is a pivotal factor in the decision-making process for energy investments, 

especially when considering wind energy installations. Priority is given to areas where the 

impact of wind turbines on current land use is minimal. The choice of a wind farm location 

is significantly influenced by land use restrictions, prohibiting the construction of wind farms 

in certain areas despite adequate wind speeds. Unsuitable locations may include forests, 

wetlands, aviation zones, archaeological sites, and more. The most suitable types of land for 

wind farm installation are agricultural land, grassland, barren land, and shrubland, while 

forested land is considered less suitable. Notably, this study excluded wetlands, water 

sources, and settlements from consideration, recognizing that it would be inappropriate to 

construct wind farms in these areas. This approach acknowledges the importance of 

preserving specific land uses and ensures responsible decision-making in the development of 

wind energy projects. (Benti et al., 2023). 

3.3  Machine Learning Model 

3.3.1  Support Vector Machine Model 

Support Vector Machine (SVM) is a non-linear, data-driven technique that has gained 

popularity, particularly for its superior performance compared to traditional Error-Reduction 

Minimization (ERM) methods used in conventional neural networks. The strength of SVM 

lies in its ability to minimize the upper bound on anticipated risk, which mitigates the impact 

of reducing training data error. This characteristic provides SVM with a greater capacity to 

generalize functions compared to neural networks. The non-linear nature of SVM allows it 

to handle complex relationships in data, making it effective in various applications, including 

wind power prediction in this study. (Pandit and Kolios, 2020). Support Vector Machines 

(SVMs) were originally designed for objective or optimal classification, commonly referred 

to as Support Vector Classification (SVC). However, in more recent applications, SVMs have 

been adapted for regression tasks and are known as Support Vector Regression (SVR). This 

section provides a theoretical description of SVM regression models. The fundamental 

concept behind SVM regression involves mapping the input data, denoted as x, into a high-

dimensional feature space using a nonlinear mapping. Once the data is transformed, a linear 

regression is performed within this feature space. This approach allows SVM to capture 

complex relationships and patterns in the data, making it suitable for regression tasks where 

the goal is to predict continuous outcomes rather than discrete classes. The use of SVR 

extends the versatility of SVM to handle various types of predictive modeling, including 

regression applications. (Mohandes et al., 2004). 

 

3.3.2  Random Forest 

The Random Forest (RF) algorithm is widely recognized and highly effective for 

addressing both regression and classification problems. Introduced by Breiman in 2001, the 

algorithm is grounded in the concept of model aggregation. The foundation of RF lies in the 

combination of "bagging" (an idea presented in Breiman's work in 1996) and the 
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incorporation of random feature selection introduced by Ho in 1998. The central principle of 

RF involves the creation of an ensemble comprising numerous binary decision trees. These 

trees are constructed using multiple bootstrap samples derived from the learning dataset (L). 

At each node in the trees, a random subset of explanatory factors (x) is selected, contributing 

to the diversity of the individual trees. Crucial parameters for RF models include the number 

of trees in the ensemble and the choice of predictors used to determine the splits at each node, 

factors that significantly influence the performance of the Random Forest algorithm (Vorpahl 

et al., 2012). 

4.  Results 
4.1  Factors Considered for Wind Plants 

Wind Speed 

Figure 6b indicates that the wind speed in the study area ranges from 3 to 7 km/s. The 

suitability classification suggests that areas with a wind speed greater than 4.0 km/s are 

considered suitable for a wind farm plant, while other areas are deemed less suitable. This 

approach aligns with the common practice in wind energy projects, where areas with higher 

wind speeds are typically preferred for optimal energy generation. The specified threshold of 

4.0 km/s serves as a criterion for determining the suitability of different regions to wind speed 

in the context of your analysis. 

Distance to Settlement 

The most suitable region is identified as an area greater than 16 km away from a 

settlement area. This is represented as "very good" in Figure 6a. Table 2 provides further 

details, showing the distribution of road proximity to settlement areas. It seems that the study 

considers a greater distance from settlement areas as more favorable, possibly to minimize 

potential impacts or conflicts associated with wind farm construction. The specified threshold 

of 16 km suggests a particular criterion for determining the suitability of regions concerning 

their proximity to settlements in the context of your analysis. 
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Figure 5: (A) Settlement proximity to suitable wind farm site, (B) wind speed validity 

 

 
Figure 6: (A) Road Network Proximity, (B) River Network Proximity 
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Figure 7: (A)slope distribution for suitable wind farm site, (B) Land use and Land Cover 

Validity 

Table 2: Showing the distribution of factors used in the study 

Rank Distance 

Settlement 

Distance 

from Road 

Distance 

from River 

Slope % LULC Remark 

1 > 16km < 1.67 km >  7 km <  10 Bare land Very Good 

2 7 – 16km 1.67 – 3 km 4 – 7 km 10 – 20 Vegetation Good 

3 3- 7 km 3- 5 km 600 m – 

4km 

20 – 30 Built-up Bad 

4 0 – 3 km  > 5 km  < 600 m > 30 Waterbodies Very Bad 

 

Distance from Road 

In this study, distance plays a crucial role in determining the accessibility to the wind 

farm. Figure 7a indicates that areas with a distance of less than 1.67 km are classified as "very 

good," suggesting that closer proximity is considered highly favorable. On the other hand, 

areas with distances greater than 5 km are graded as "not suitable." Table 2 provides further 

details on the distribution of areas based on these distance classifications. This approach 

emphasizes the significance of accessibility, with the study favoring regions that are closer 

to the specified distance threshold for optimal wind farm site selection. 

Distance from rivers  

In this study, the most suitable region, considering the distance to the river, is 

identified as being 7 km away from the river. The Euclidean distance metric was employed 
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for this determination, and it is visually represented as "very good" in Figure 7b. 

Additionally, Table 2 indicates that areas with distances less than 600 meters are considered 

not suitable for the wind farm. This suggests that, based on the specified criteria, maintaining 

a minimum distance of 7 km from the river is considered optimal for wind farm site selection, 

ensuring the suitability of the chosen region. Areas closer than 600 meters from the river are 

likely excluded due to certain constraints or considerations mentioned in your study. 

Slope  

In Figure 8a, areas that are depicted as flat are considered suitable for wind farm 

development. The suitability is measured on a scale ranging from 00 to 100, where regions 

with a value greater than 10 are considered less suitable. This indicates that the flat areas, 

characterized by values below 10, are considered more favorable or appropriate for the 

implementation of a wind farm plant in the context of your study. The specific threshold of 

10 suggests a criterion for determining the suitability of flat areas for wind energy projects 

in this analysis. 

Land use/land cover (LULC)  

The results presented in Figure 8b indicate that bare land and vegetation are more 

suitable for the implementation of a wind farm plant. This suggests that, in the context of this 

study, areas characterized by bare land and vegetation are deemed more favorable or 

appropriate for establishing wind farm facilities. This finding aligns with the common 

practice in wind energy planning, where the choice of land types, such as bare land and 

vegetation, is often preferred due to factors like ease of construction, lower environmental 

impact, and better utilization of wind resources. 

 
Figure 8: Area under Curve for SVM and RF 
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4.2  Machine Learning Model 

Accuracy of Model 

The Area Under the Curve (AUC) is a metric that ranges from 0 to 1, representing the 

accuracy of a predictive model. In Figure 9, it is observed that the Random Forest model's 

prediction for wind farm plant site selection exhibits a higher accuracy with an AUC of 0.827. 

In comparison, the Support Vector Machine (SVM) Model Prediction shows a slightly lower 

accuracy with an AUC of 0.747. This indicates that, based on the AUC metric, the Random 

Forest model is performing better in predicting suitable sites for wind farm construction than 

the Support Vector Machine model in this particular study. 

 

Table 3: Area Under Cover 

Methods AUC 

SVM 0.75 

RF 0.83 

 

Table 4: show RF and SVM results and percentage of area covered 

 Value RF Area 

(ha) 

RF % SVM Area(ha) SVM % 

1 Very 

Good 

1174.04 0.23 2758.42 0.55 

2 Good 2484.86 0.49 9164.34 1.81 

3 Fair 13871.9 2.74 28929.23 5.72 

4 Bad 97160.26 19.2 182899.29 36.14 

5 Very Bad 391365.28 77.34 282305.05 55.79 

 

0.23% of the random forest model of the entire study area is most suitable for wind plant 

farm compare to 0.55% of the support vector machine model, while 0.49% and 1.81% of RF 

and SVM respectively is under the good category while 77.34% of the RF and 55.79% of the 

SVM is not suitable as labeled in table 4. As shown in Figure 10, the map of the model is 

being revealed. 
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Figure 9: Random Forest and Support Vector Machine Result 

5.  Conclusion 
In conclusion, this study conducted in Ekiti state successfully employed a GIS-based 

machine learning approach to identify the most suitable sites for wind farm plants. Utilizing 

predictive models, namely Support Vector Machine (SVM) and Random Forest (RF), 

enhanced the precision of wind farm site selection. The inclusion of six factors in creating 

training and testing datasets for model verification and validation contributed to the 

robustness of the analysis. The validation process, utilizing the Area under the Curve (AUC) 

metric, revealed AUC values of 0.75 for SVM and 0.8 for RF. Notably, the Random Forest 

model exhibited the highest predictive capability, suggesting its superiority in this context. 

Ultimately, the integration of GIS and machine learning models, especially the application 

of the Random Forest algorithm, proved to be an effective method for assessing the potential 

sites for wind farm plants in the study area. 

 

References 
Benti, N. E., Alemu, Y. B., Chaka, M. D., Semie, A. G., &Mekonnen, Y. (2023). Site 

Suitability Assessment for the Development of Wind Power Plant in Wolaita area, 

Southern Ethiopia: An AHP-GIS Model [Preprint]. In Review. 

https://doi.org/10.21203/rs.3.rs-2474836/v1 



96 
 

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/A:1010933404324 

Li, L.-L., Zhao, X., Tseng, M.-L., & Tan, R. R. (2020). Short-term wind power forecasting 

based on support vector machine with improved dragonfly algorithm. Journal of 

Cleaner Production, 242, 118447. https://doi.org/10.1016/j.jclepro.2019.118447 

Mohandes, M. A., Halawani, T. O., Rehman, S., & Hussain, A. A. (2004). Support vector 

machines for wind speed prediction. Renewable Energy, 29(6), 939–947. 

https://doi.org/10.1016/j.renene.2003.11.009 

Moltames, R., Naghavi, M. S., Silakhori, M., Noorollahi, Y., Yousefi, H., Hajiaghaei-

Keshteli, M., &Azizimehr, B. (2022). Multi-Criteria Decision Methods for Selecting 

a Wind Farm Site Using a Geographic Information System (GIS). Sustainability, 

14(22), Article 22. https://doi.org/10.3390/su142214742 

Olorunfemi, I., Fasinmirin, J., Olufayo, A., &Komolafe, A. (2020). GIS and remote sensing-

based analysis of the impacts of land use/land cover change (LULCC) on the 

environmental sustainability of Ekiti State, southwestern Nigeria. Environment, 

Development and Sustainability, 22. https://doi.org/10.1007/s10668-018-0214-z 

Pandit, R., &Kolios, A. (2020). SCADA Data-Based Support Vector Machine Wind Turbine 

Power Curve Uncertainty Estimation and Its Comparative Studies. Applied Sciences, 

10(23), Article 23. https://doi.org/10.3390/app10238685 

SeyedAlavi, S. M., Maleki, A., &Khaleghi, A. (2022). Optimal site selection for wind power 

plant using multi-criteria decision-making methods: A case study in eastern Iran. 

International Journal of Low-Carbon Technologies, 17, 1319–1337. 

https://doi.org/10.1093/ijlct/ctac009 

Vorpahl, P., Elsenbeer, H., Märker, M., &Schröder, B. (2012). How can statistical models 

help to determine driving factors of landslides? Ecological Modelling, 239, 27–39. 

https://doi.org/10.1016/j.ecolmodel.2011.12.007 

Wang, C., &Nehrir, M. H. (2008). Power Management of a Stand-Alone 

Wind/Photovoltaic/Fuel Cell Energy System. Energy Conversion, IEEE Transactions 

On, 23, 957–967. https://doi.org/10.1109/TEC.2007.914200 

Yürek, Ö.,Bi̇Rant, D., &Yürek, İ. (2021). 

MakineÖğrenmesiAlgoritmalariniKullanarakRüzgarEnerjisiÜretimiTahmini. 

DeuMuhendislikFakultesi Fen veMuhendislik, 23(67), 107–119. 

https://doi.org/10.21205/deufmd.2021236709 

 

 

 


