
Journal of Geomatics and Environmental Research, Vol. 1, No. 1, December 2018 

1 
 

RELIABILITY STUDY ON DAM DEFORMATION MONITORING 

USING GEODETIC AND OPTIMIZATION TECHNIQUE 

Olunlade O.A., Omogunloye O.G., Olaleye  J.B. 

Dept. of Surveying and Geoinformatics,  

University of Lagos, Akoka, Lagos. Nigeria. 

olunlade.femi@gmail.com 

gabolushohan@yahoo.com 

jb_ola@yahoo.com 

Abstract 
Dam deformation monitoring techniques require the establishment of triangulation 

network within the dam area for the study of the deformation. However, in a case 

whereby there exist many dams and they need to be monitored simultaneously, then 

there is the need to take the curved nature of the earth into consideration. In this paper, 

marked object points on seven dams were formed into a triangulation network and 

computed through relevant geodetic and optimization principles. Observation 

equation method was used to define equations relating observations to the unknown 

parameters. Three control stations were used as main control stations. Thirteen 

curvilinear triangles are considered, consisting of twenty unknown parameters in 

seventy-eight geodetic observables. Geodetic optimization principles were employed 

in achieving necessary statistical conclusions regarding the reliability of the network. 

The variance covariance matrix is derived from the adjustment procedure. Necessary 

algorithm also produced the error ellipse data for each station. A close examination 

of the output indicates the stability of the object points at the examined epochs. This 

paper aims at determining and investigating the strength or weakness (reliability, 

dependability or trustworthiness) of the network of the dams’ positions using geodetic 

and optimization techniques. 

Keywords: Dams, triangulation network, deformation, variance-covariance, 

error ellipse, Geodetic monitoring 

1.0 Introduction 
The position of a point in space can be geometrically described by three-

dimensional geographic and Cartesian coordinates referenced to the centre of 

mass of the earth. However, the introduction of the construction of an auxiliary 

sphere of unit radius and relating it to the ellipsoid (Richard, 1993) has enabled 

and allowed the separation of horizontal positions and vertical positions of 

geodetic points above the ellipsoid. While Surveyors prefer to describe 

positions of points in terms of their Cartesian equivalent, Geodesists prefer as 

appropriate and informative description of relative points in terms of latitude, 

longitude and ellipsoidal height. The configuration of the network of triangles 

would be investigated and subjected to “line-test” (whether short, medium or 

long lines are involved) which should hopefully lead to the usage of the right 

formulae (Richard, 1993).This leads to the appropriate solution of the inverse 

and direct geodetic problems, being the two main geometric geodetic 

computation problems (Krakiwsky & Thomson, 1974). Short lines are graded 

as lines less than or equal to 80-100km, depending on the strength of the 

formula. Hence, formulae, whose results are considered correct to 1 ppm at 100 

km would be suitable for such geodetic computation. Lines with lengths above 
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80km, or ranging between 100km and 500km could be regarded as medium 

lines (Rapp, 1993). However, lines measuring more than 500km are long lines.  

The deformation of a body is fully described if the displacement field d (x,y,z; 

t-𝑡0) is known (Chen Y.Q, Chrzanowski A, et. al, 1983). The local Cartesian 

coordinates of points to which the observables L(t) is related are the x,y,z. The 

observables and deformation parameters are related through a generalized 

model 

L(t) = L(𝑡0) + ∆L (x,y,z; t-𝑡0; 𝑒 )    

  eq. (1) 

Where 𝑒 is the vector of deformation parameter. However, Ali H. Fagir and 

Mudathir O. Ahmed (2013) worked on a procedure for detection of 

deformations using survey control networks using coordinates in plane 

geometry. Abdulkadir and Mutari (2015) also reviewed the concept of the 

importance and application of control network to effective monitoring of dams 

structures within the scope of engineering geodesy. Ehigiator, Ehiorobo et 

al.(2014) used a kinematic model to predict the magnitude of displacement of 

object points using Kalman Filter technique. Basic geometric data capture 

surveying instruments were used and a single dam was considered as a case 

study. In this paper, short and medium lines are considered, since the distances 

involved are mostly above 10000 km. In addition, geodetic observables will be 

considered instead of plane geometry. 

The motivation for this research arose from the fact that Osun state Nigeria has 

more than fifteen dams under her control with no evidence of geodetic 

monitoring of any. In addition, there are about five dams that had broken down 

structurally. Hence, they are out of effective use. The cost of ineffectiveness of 

the damaged dams definitely outweighs the cost of geodetic and engineering 

monitoring of the dams if deformation study had been done earlier. Thus, three 

main first order controls are used as controls for the research. These are FGP-

27, KAJOLA-1 and EDCS 01 all being statistically tested and confirmed to be 

homogeneous. Seven dams within the geographical enclosure of Osun state are 

involved in the test. They are Ede dam (EDE), Ejigbo dam (EJG), Iwo dam 

(IWO), Owala dam (OWL), Eko-Ende dam (EKO), Esa Odo dam (ESA), and 

Ilesha dam (ILS). Table 1 shows the raw data and adjusted data used as epoch 

one and two data in the computations and analysis in this paper. The table shows 

the latitude (φ) and longitude (λ) of a major object stations in each dam, which 

would be involved in the least squares optimization analysis. In order to know 

which formulae must be used in computing the direct and inverse geodetic 

problems in this chain, it is necessary to subject the chain to a distance test. All 

programs in this project are written in MATLAB environment. Table 2 gives 

the output of distances between every two stations within each triangle, for the 

thirteen triangles involved. From investigation, all lines in the chain could be 

regarded as short or medium lines. 

 

 

 

 



Journal of Geomatics and Environmental Research, Vol. 1, No. 1, December 2018 

3 
 

2.0 Control Information 
 

Table 1: Coordinates and Location Of All Control Points 
CONTROL 

PILLAR 

LATITUDE   

(Dec of Deg) 

LONGITUDE 

(Dec of Deg) LOCATION 

FGP-027 7.795315833 4.541941944 LANDERO ROUND ABOUT, 

OSOGBO. 

[OSGOF PUBLISHED 

PILLAR] 

EDCS-01 7.731785703 4.516058511 FRONT OF STATE 

SECRETARIAT ABERE 

[STATE PUBLISHED PILLAR] 

KAJOLA 7.74678646 4.63137742 

BESIDE KAJOLA NEW DAM, 

ILESA RD. 

KAJOLA[TRANSLOCATION 

FROM ABOVE 2 PILLARS] 

All stations are within the boundary of Osun state in Nigeria. EDCS-01 and 

KAJOLA pillars had their coordinates established from FGP-027, published by 

the Office of the Surveyor General of the Federation (OSGOF) in the FGP 

series. The coordinates of the three pillars were checked for homogeneity. 

Results show an average difference of -0”.0003 in the latitude and + 0”.0004 in 

the longitude. 

 

3.0 Literature, Materials, Models, Methods 

In geodetic position computations, equations relating observations to the 

unknown parameters are defined by either observation equation method or 

condition equation method of solving least squares problems. In this paper, 

observation equation method was used, with the mathematical model  

La = f (Xa)    eq. (2) 

In practice, observations made in geodetic fieldwork include, but not limited to 

angles (in rounds), Laplace Azimuth, distances, GPS Coordinates etc. The 

parameters being sought are usually the correction to coordinates (∆ф and ∆λ).  

According to Rapp (1991), the solution of either the direct or the inverse 

geodetic problem is basically a solution of the ellipsoidal polar triangle (Figure 

3). There are different methods for the computational solution of ellipsoidal 

polar triangle (Fig 3.1) to obtain geodetic coordinates (Rapp, 1987) namely 

Series Development in Powers of s, the Puissant Formulas, Gauss Mid Latitude 

Formulas, Bowring Formulas, etc. MATLAB programs (Olunlade, 2017) were 

used for the solution of large matrix manipulation in solving the least squares 

problems arising from the computation and adjustment of the dams’ geo 

location geometric data. 
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FIGURE 1: MAP OF NIGERIA SHOWING STATES 

 

 
FIGURE 2: ADMINISTRATIVE MAP OF OSUN STATE 

2.1 Direct Solution 

The series development in powers of s (s is the arc length between two 

points)– method is used in this paper. Given the coordinates of a starting point 

(ф1,  λ1), distance separating the geodesic (s), and Azimuth from starting point 

to second point (α12), the problem is to find the coordinates of the second point 

(ф2,  λ2) and the back Azimuth from second point to the starting point (α21).  
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Ф2  − ф1

𝑉2  = u - 
1

2
𝑣2t  -

3

2
𝑢2𝜂2t - 

𝑣2

6
𝑢(1+3𝑡2+𝜂2-9𝜂2𝑡2) - 

𝑢3

2
𝜂2(1-𝑡2) + 

𝑣4

24
𝑡(1+3𝑡2+𝜂2-9𝜂2𝑡2) + 

𝑣2𝑢2

12
𝑡(4+6𝑡2- 13𝜂2-9𝜂2𝑡2) + 

1

2
𝑢4𝜂2𝑡 + 

𝑣4

120
𝑢(1+30𝑡2+ 45𝑡4) - 

𝑣2𝑢3

30
(2+15𝑡2+ 15𝑡4)   = X  

Φ2 =  Φ1 + 𝑉2 X     eq (3) 

(λ2- λ1) Cos ф1 = v + vut - 
𝑣3

3
𝑡2 + 

𝑢2

3
𝑣(1+3𝑡2+𝜂2) - 

𝑣3

3
𝑡(1+3𝑡2+𝜂2) + 

𝑢3

3
𝑣(2+3𝑡2+𝜂2) + 

𝑣5

15
𝑡2(1+3𝑡2)+ 

𝑢4

15
𝑣(2+15𝑡2+𝑡4) + 

𝑣3

15
𝑢2(1+20𝑡2 + 30𝑡4) + 

𝑣5

15
𝑡2(1+3𝑡2)+ 

𝑢4

15
𝑣(2+15𝑡2+𝑡4) + 

𝑣3

15
𝑢2(1+20𝑡2 + 30𝑡4) = Y 

λ2 =   λ1 +  Y.  Sec ф1     eq(4) 

α21  – (α12 ± 180o) = vt + 
𝑣𝑢

2
 (1+2𝑡2+𝜂2) - 

𝑣3

6
𝑡(1+2𝑡2+𝜂2) + 

𝑣𝑢2

6
𝑡(5+6𝑡2+𝜂2-

4𝜂4) 
𝑣3

24
𝑢(1+20𝑡2 + 24𝑡4+2𝜂2-8𝜂2𝑡2) + 

𝑢3

24
𝑣(5+28𝑡2 + 24𝑡4+6𝜂2-8𝜂2𝑡2) 

𝑣5

120
𝑡(1+20𝑡2 + 24𝑡4) -  𝑣3 𝑢2

120
𝑡(58+280𝑡2 + 240𝑡4) +  

𝑣𝑢 4

120
𝑡(61+180𝑡2 + 

120𝑡4)    = Z 

α21   = (α12 ± 180o)  + Z     eq(5) 

𝑉2= 1 + 𝜂2 ;  c = 
𝑎2

𝑏
 ;  v = 

𝑉𝑠𝑆𝑖𝑛𝛼

𝑐
  ;   u = 

𝑉𝑠𝐶𝑜𝑠𝛼

𝑐
  ; 𝜂2 = 𝑒′2 Cos 2 ф ;   t = tan ф 

Above equations are usable for lines up to 130km Bagratuni (1967) and 

Grushinsky (1969). All angular units of the latitude and longitude are converted 

to radians. The direct solution is non – iterative. 

2.2 Inverse Solution 

Given the coordinates of a starting point (ф1,  λ1), the coordinates of the second 

point (ф2,  λ2), the problem is to find the Azimuth from starting point to second 

point (α12), Back Azimuth from second point to the starting point (α21), and the 

distance separating the geodesic (s). The inverse solution is iterative. 

 ∆ф = ф2 – ф1;    ∆λ = λ2 - λ1 

Before iteration, get initial values of α12 and s from  tan α12 = 𝑉1
2𝐶𝑜𝑠ф1 [

∆𝜆

∆ф
], 

compute pre – iteration value of s from  s = 
𝑐

𝑉1
3

∆ф

𝐶𝑜𝑠 𝛼12
   and obtain  α12  and s 

accordingly. With α12 and s computed, values of ∆A and ∆B are computed from 

ф2 – ф1 = 
𝑉1

3

𝑐
 Cos α12  . s  + ∆A 

 ∆A = (ф2 – ф1)   -  
𝑉1

3

𝑐
 Cos α12  . s      
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λ2 - λ1 =  
𝑉1

𝑐

𝑆𝑖𝑛 𝛼12

𝐶𝑜𝑠 ф1
 . s + ∆B 

∆B = (λ2 - λ1)  -  
𝑉1

𝑐

𝑆𝑖𝑛 𝛼12

𝐶𝑜𝑠 ф1
 . s   eq (6) 

Calculate a new α12 from tan α12 = 𝑉1
2𝐶𝑜𝑠ф1 [

∆𝜆− ∆𝐵

∆ф− ∆𝐴
] and then compute a new 

s from s = 
𝑐

𝑉1
3

∆ф− ∆𝐴

𝐶𝑜𝑠 𝛼12
. Compute a new set of ∆A and ∆B and then repeat steps c, 

d, e again until the difference between successive computed values of α12 and s 

become mathematically inconsiderable. Compute Back azimuth α21 = α12± 180o 

 

2.3 Least Squares Computational Steps 

From Geodetic Positioning (Ayeni, 1980), the following mathematical model 

and stochastic model for observation equation method of solving least squares 

problems are listed (Table 3.1). Literature explains the formulation of the 

different mathematical models for observations in geodetic surveying (angles, 

distances, azimuth, GPS coordinates), leading to appropriate observation 

equations which would eventually yield vectors of residual. For full details of 

mathematical and statistic model, see (Ayeni, 1980) 

 

La = f(Xa);  Xa = Xo + X;  V = AX + L;  L = Lo  -  Lb;  

Lois the L observed; Lb is the L computed 

NX = U;  N = ATPA; U = -ATPL; X = N -1 U eq (7) 

n – m; where n=number of observations and m=number of parameters 

Variance of unit weight is  
𝑉𝑇𝑃𝑉

𝑛−𝑚
 while the co-variance matrix of adjusted 

parameters is ( ∑ 𝑋𝑎 ) 2=  𝜎𝑜
2  N -1 

The covariance matrix of adjusted observations is  𝜎𝑜
2  ( AN -1 AT). 

Note that the following notation and definition remain for respective symbols: 

A = 
𝜕𝑓 (𝑋𝑎)

𝜕 (𝑋𝑎)
; X = corrections to Xo; Lo = 𝑓 (𝑋𝑜); La = Lb + v;   

Lb = observations, Xo = approximate values of parameters;  

Xa = Adjusted parameters 

 

2.4.1 Formulation Of Design Matrix  

The design matrix has been formulated using full curvilinear geometry model 

(2.4.1), and then subjecting the results to necessary stochastic tests to determine 

the correctness of usage. 

 
2.4.2 USING ELLIPSOIDAL GEOMETRY MODEL FOR SHORT / MEDIUM 

LINES 

In this method, the main observation equations of 2.1 to 2.7 were used to form 

the design matrix A. Complete curvilinear algorithm was used in the 

formulation of the elements of the matrix, and a program was written in 

MATLAB environment to compute each respective elements of the design 

matrix, first as A1 in 39x4 matrix and later as A matrix which is 39x20 matrix. 

The formulae are as follows from literature: (Rapp, 1991). 



Journal of Geomatics and Environmental Research, Vol. 1, No. 1, December 2018 

7 
 

When only point 2 is free to move: Consider the change in ф2, 𝝀2caused by 

a change in distance ds and forward azimuth change  𝑑𝛼12at the first point𝑃1: 

ds = -𝑀2 Cos 𝛼21𝒅ф𝟐  - 𝑁2 Cos ф2Sin 𝛼21𝒅𝝀𝟐 

    

w  𝑑𝛼12 = 𝑀2 Sin 𝛼21𝒅ф𝟐  -𝑁2 Cos ф2Cos𝛼21𝒅𝝀𝟐 

   

w  𝑑𝛼21 = 𝑀2 Sin 𝛼21
𝒅𝒘

𝒅𝒔
𝒅ф𝟐 + 𝑁1 Cos ф1Cos𝛼12𝒅𝝀𝟐  

    
𝒅𝒘

𝒅𝒔
 =    𝑪𝒐𝒔

𝒔

𝑹
         

      eq(8) 

When Both End Points 1 & 2 are Free to Move:  

ds𝑇=-𝑀2 Cos 𝛼21𝒅ф𝟐 - 𝑀1 Cos 𝑎12 𝒅ф𝟏 - N2   Cos ф𝟐 Sin 𝛼21(𝒅𝝀𝟐 − 𝒅𝝀𝟏)

   

w𝑑𝛼12𝑻 =𝑀2 Sin 𝛼21𝒅ф𝟐+ 𝑀1Sin𝑎12
𝒅𝒘

𝒅𝒔
𝒅ф𝟏 − N2   Cos ф𝟐 Cos 𝛼21(𝒅𝝀𝟐 −

𝒅𝝀𝟏)         eq(9) 

For ease of computation, ellipsoid is equivalent to sphere whose radius is the 

GMR at the first point. Putting  𝑀1 = 𝑀2=  N2   = R 

s𝑑𝛼12𝑻 =Sin 𝛼12𝒅ф𝟏 + 𝑀2 Sin 𝑎21  𝒅ф𝟐 −  N2   Cos ф𝟐 Cos 𝛼21(𝒅𝝀𝟐 −

𝒅𝝀𝟏)          

        eq(10) 

3.0 Results And Discussions 

Coordinates obtained are tested for dependability before being used in the 

deformation analysis. Table 1 below shows output adjusted coordinates. 
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Table 3.1: Raw And Adjusted Data - Epoch 1, Epoch 2 & Epoch 3 Data 
SERIAL NO LATITUDE 

(Dec of Degrees) 

LONGITUDE 

(Dec Of Degrees) 

EPOCH LATITUDE 

(Dec Of Degrees) 

LONGITUDE 

(Dec Of Degrees) 

COMMENT 

  RAW RAW   ADJUSTED ADJUSTED   

1 7.758333333 4.458333333 1 7.756605125 4.458335164   

EDE 7.758504917 4.455136558 2 7.756459648 4.455138361 EDE 

  7.757430556 4.455930556 3 
7.758555723 4.455134691 

  

2 7.894444444 4.533333333 1 7.892713077 4.533362755   

OWALA 7.894400497 4.537152511 2 7.892351214 4.537184266 OWL 

  7.892505556 4.539105556 3 
7.894443111 4.537180015 

  

3 7.933333333 4.591666667 1 7.931604965 4.591677052 EKO 

EKO 7.93730375 4.595228022 2 7.9352588 4.595239009   

 ENDE 7.936252778 4.596075 3 
7.937356622 4.595234526 

  

4 7.758333333 4.8125 1 7.75655025 4.812411374 ESA 

 ESA 7.757926094 4.812731061 2 7.755828084 4.812641437   

 ODO 7.756844444 4.813597222 3 
7.757942189 4.812659797 

  

5 7.866666667 4.366666667 1 7.864915669 4.366624805 EJG 

EJIGBO 7.865800375 4.369438203 2 7.863733736 4.369397766   

  7.864730556 4.370241667 3 
7.865833719 4.369391458 

  

6 7.633333333 4.2 1 7.631306573 4.199967061 IWO 

IWO 7.637024603 4.199640953 2 7.634680465 4.199605456   

  7.635930556 4.200441667 3 
7.636780085 4.199597820 

  

7 7.6 4.7125 1 7.598263473 4.712541524 ILS 

ILESHA 7.601272656 4.712714961 2 7.59921952 4.712756089   

  7.601141667 4.712613889 3 
7.601315678 4.712753915 

  

8 7.795315833 4.541941944 1 7.79359124 4.541945032 F27 

FGP- 7.795315833 4.541941944 2 7.793274681 4.541946057   

 027 7.795315833 4.541941944 3 
7.795373560 4.541941547 

  

9 7.731785703 4.516058511 1 7.729945206 4.516136242 ABR 

EDCS 7.731785703 4.516058511 2 7.7296283 4.51613376   

 01 7.731785703 4.516058511 3 
7.731726561 4.516128763 

  

10 7.74686333      4.63156198 
1 

7.746863338 4.631561984  

KAJOLA 7.74678646 4.63137742 
2 

7.746863596 4.631561748 KAJ-1 

 7.74672384 

  

4.63123718 

3 

7.746863249 4.631562248  
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Table 3.2: Consistency Test On 39 Geodesics Involved In The Triangulation Net 

epoch 1 epoch 2 epoch 3 

 

  

 

  

(m) (m) (m) (m) (m) 

7591.0766808 7591.0820352 7591.0819578 0.0053544 0.0052770 

21911.4995030 21951.0645318 21950.9945417 39.5650288 39.4950387 

20538.2323770 20560.6811140 20560.5790182 22.4487370 22.3466412 

20541.1910027 20563.6589052 20563.5567977 22.4679025 22.3657950 

18818.9274440 18771.1899707 18770.9591726 -47.7374734 -47.9682715 

10969.9886049 10966.9008098 10966.0720774 -3.0877952 -3.9165275 

20541.1910027 20563.6589052 20563.5567977 22.4679025 22.3657950 

26217.0706862 26129.9795157 26129.8068936 -87.0911706 -87.2637927 

16805.7911608 16761.9916220 16761.8944629 -43.7995389 -43.8966979 

10969.9927614 10966.9058086 10966.0770756 -3.0869528 -3.9156858 

8000.6446963 7967.7782253 7968.1707516 -32.8664710 -32.4739448 

16805.7911608 16761.9916220 16761.8944629 -43.7995389 -43.8966979 

16806.5098206 16762.6950491 16762.5978857 -43.8147715 -43.9119349 

31028.7965190 31114.6889154 31115.1482224 85.8923964 86.3517034 

30112.8435821 30144.2379855 30146.0693576 31.3944034 33.2257755 

30110.2346623 30141.5986680 30143.4309291 31.3640056 33.1962668 

20549.6302549 20523.3711933 20526.0303992 -26.2590617 -23.5998557 

28533.0856484 28558.3978664 28558.4429235 25.3122180 25.3572751 

20549.6302549 20523.3711933 20526.0303992 -26.2590617 -23.5998557 

26023.3971584 26050.2088653 26050.2341152 26.8117068 26.8369568 

32814.5018684 32835.7849088 32838.0188312 21.2830404 23.5169628 

26017.8748988 26044.6753540 26044.7005905 26.8004553 26.8256918 

56698.1777335 56758.5654029 56758.2928748 60.3876694 60.1151413 

36414.6003942 36467.7036559 36467.3620829 53.1032616 52.7616887 

36407.1675943 36460.2275700 36459.8862382 53.0599757 52.7186439 

31389.2785173 31501.1525534 31500.8678229 111.8740361 111.5893055 

21907.6843948 21947.2409216 21947.1709696 39.5565268 39.4865747 

31389.2785173 31501.1525534 31500.8678229 111.8740361 111.5893055 

15166.2966124 15168.1597490 15168.4720360 1.8631367 2.1754236 

31212.1227650 31236.8923397 31236.6432488 24.7695747 24.5204838 

15167.8195316 15169.6729337 15169.9852688 1.8534021 2.1657373 

20538.2323770 20560.6811140 20560.5790182 22.4487370 22.3466412 

10368.5936593 10403.6381787 10403.5072222 35.0445194 34.9135629 

10369.3654681 10404.4112742 10404.2803363 35.0458061 34.9148682 

7591.0766808 7591.0820352 7591.0819578 0.0053544 0.0052770 

7303.3728472 7353.3746330 7353.0352620 50.0017858 49.6624148 

11238.8421175 11238.8498696 11238.8498558 0.0077521 0.0077383 

12837.0128947 12836.9699590 12836.9701910 -0.0429357 -0.0427037 

7591.2380180 7591.2433665 7591.2432892 0.0053485 0.0052712 
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In testing for the dependability of obtained geodesics,  

the test hypothesis used is   𝐻0:    E {𝜎0 

2} = E {𝜎̂0 

2}.  

The Alternate hypothesis  𝐻𝐴:   E {𝜎0 

2} ≠ E {𝜎̂0 

2}.  

The test statistic is   𝑇𝜒  =  
𝜎̂0 

2

𝜎0 
2  .r   

Where 𝑇𝜒  falls within the interval of   𝜒2
𝑆=⍺

1

2
,𝑓=𝑟

 and  𝜒2
𝑆=1−⍺

1

2
,𝑓=𝑟

 then the 

test hypothesis 𝐻0 cannot be rejected and the test passes; otherwise, the 𝐻𝐴 is 

accepted and the test fails (. ⍺ is 5%). 

From Table 2, differences were computed δ 12  between epoch 1 and epoch 2 

as well as δ 13  between epoch 1 and epoch 3. The discrepancies ∆123 in the 

differences  ∆123  =    δ 13 -  δ 12 are then passed through the χ 2 test at 5% 

confidence level. The standard deviation computed from the discrepancies is 

𝜎̂0 

  =  0.84570658499 while the test statistics 𝑇𝜒 is 27.17834586.  

Table 3.3: Percentage Of Agreement Of Variances (Epoch 1-Epoch 2) & (Epoch 1-Epoch 3) 

 F-Test (1 - 2(a)) F-Test (1 - (2b)) 

EPOCH 1 99.999% 99.997% 

EPOCH 2 99.543% 99.997% 

EPOCH 3 99.998% 99.997% 
 

From the chi squared table, the test interval is 22.88    <   𝑇𝜒   <   56.84. Since 

the computed value is within the test region, the test hypothesis 𝐻0 cannot be 

rejected and the test passes.This is an indication that the presence of unmodelled 

systemmatic errors in the data is extremely minimal and that the modelled 

observations contain little or no outliers. 
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Table 3.4: Differentials, Percentile, Percentiles Greater Than 25%, And Dams Involved 

STATIONS 

 

  percentile diff Discrepancy PERCENTILE  DAMS INVOLVED 

from A to B             (m) % in cm > 25% IN PERCENTILE >25% 

8 --- 9 -7.73443E-05 0.00 -0.01   

9 --- 5 -0.069990091 2.63 -7.00   

5 --- 9 -0.10209581 3.84 -10.21   

8 --- 5 -0.102107531 3.84 -10.21   

5 --- 2 -0.230798097 8.68 -23.08   

2 --- 8 -0.828732328 31.16 -82.87 XXXXXX 2 --- 8 

8 --- 5 -0.102107531 3.84 -10.21   

5 --- 3 -0.172622119 6.49 -17.26   

3 --- 8 -0.097159023 3.65 -9.72   

8 --- 2 -0.828733 31.16 -82.87 XXXXXX 8 --- 2 

2 ---3 0.392526238 14.76 39.25   

3 ---8 -0.097159023 3.65 -9.72   

 8 ---3 -0.097163421 3.65 -9.72   

3 ---4 0.459306986 17.27 45.93   

4 ---8 1.831372075 68.87 183.14 XXXXXX 4 --- 8 

8 --- 4 1.832261175 68.90 183.23 XXXXXX 8 --- 4 

4 --- 5 2.659205921 100.00 265.92 XXXXXX 4 --- 5 

5 --- 8 0.045057096 1.69 4.51   

8 --- 7 2.659205921 100.00 265.92 XXXXXX 8 --- 7 

7 --- 6 0.025249948 0.95 2.52   

6 --- 8 2.233922386 84.01 223.39 XXXXXX 6 --- 8 

7 --- 6 0.025236498 0.95 2.52   

6 --- 9 -0.272528121 10.25 -27.25   

9 --- 7 -0.341572957 12.84 -34.16   

9 --- 6 -0.341331784 12.84 -34.13   

6 --- 5 -0.284730525 10.71 -28.47   

5 --- 9 -0.06995203 2.63 -7.00   

6 --- 5 -0.284730525 10.71 -28.47   

5 --- 1 0.312286933 11.74 31.23   

1 ---6 -0.249090969 9.37 -24.91   

1 ---5 0.312335149 11.75 31.23   

5 --- 8 -0.10209581 3.84 -10.21   

8 ---1 -0.130956499 4.92 -13.10   

1 --- 8 -0.130937924 4.92 -13.09   

8 ---9 -7.73443E-05 0.00 -0.01   

9 ---1 -0.339370933 12.76 -33.94   

8 --- 10 -1.38065E-05 0.00 0.00   
10 --- 9 0.000232073 0.01 0.02   
9 --- 8 -7.73154E-05 0.00 -0.01   
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Table 3.5: Consistency Test On Adjusted Coordinates from Least Squares 

 epoch 2- epoch 1 epoch 3- epoch 1   

δ12 δ13 ∆123  (d.dddd) ∆123 in seconds 

0.00017164413634 0.00016928021454 -0.00000236392180 -0.008510118 

-0.00041914046642 -0.00041692378661 0.00000221667981 0.007980047 

-0.00004359292799 -0.00005106241769 -0.00000746948970 -0.026890163 

-0.00034744536926 -0.00034720646464 0.00000023890462 0.000860057 

-0.00019580231873 -0.00019666347787 -0.00000086115914 -0.003100173 

-0.00060521423278 -0.00060548534040 -0.00000027110762 -0.000975987 

-0.00040755828964 -0.00039193388814 0.00001562440150 0.056247845 

0.00023122468158 0.00025006414314 0.00001883946156 0.067822062 

0.00052291817434 0.00052321424043 0.00000029606609 0.001065838 

-0.00000669173714 -0.00000565060863 0.00000104112851 0.003748063 

-0.00047619688268 -0.00047370913153 0.00000248775115 0.008955904 

-0.00035927050390 -0.00035685993616 0.00000241056774 0.008678044 

-0.00011644602308 -0.00011715437684 -0.00000070835376 -0.002550074 

0.00021528476589 0.00021499480070 -0.00000028996519 -0.001043875 

0.00000017419604 0.00000018693452 0.00000001273848 4.58585E-05 

0.00000001683412 -0.00000007203896 -0.00000008887308 -0.000319943 

-0.00000019266582 -0.00000017325211 0.00000001941371 6.98894E-05 

0.00000045706158 0.00000035484750 -0.00000010221408 -0.000367971 

0.00000025810096 -0.00000008850775 -0.00000034660871 -0.001247791 

-0.00000023635015 0.00000026443139 0.00000050078154 0.001802814 

 

From table 6, the column of the percentile shows differentials that have values 

greater than 10% (i.e. approximately 20cm). From the analysis, Dam 1, Dam 2, 

Dam 4 and Dam 6 were singled out. Though if 25% and above is considered, 

only Dam 2 and Dam 4 would be scrutinized geodetically, i.e. taking further 

geometric observations on the dams individually and independently. 

To be able to trust the coordinates for further use, the discrepancy between δ12  

and δ13 (i.e. ∆123) has the standard deviation of 0.64189355 and it was subjected 

to a chi squared test at ⍺=5%. The chi squared region from table is  

 8.91      <  Tχ2   <   32.9 

The value obtained from the statistics Tχ  =  
σ̂0 

2

σ0 
2 .r  is 12.195977 with  

r = N-1 =20-1=19. 

Since the value computed is within the statistic region, the test passes, and the 

coordinates are considered reliable and entitled to be included in the further 

deformation studies. 
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Table 3.6: Difference ∆123 In Seconds and In cm 

 ∆ in cm PERCENTILE PERCENTILE 

  ABS VALUES > 10% 

LAT            -1 -26.31517747 12.54771423 XXXXXXXX 

LONG        -1 24.67607965 11.76615268 XXXXXXXX 

LAT            -2 -83.15035934 39.64810605 XXXXXXXX 

LONG        -2 2.659486236 1.268107476  

LAT            -3 -9.586423551 4.571039027  

LONG        -3 -3.017970025 1.439041233  

LAT            -4 173.9308375 82.93443764 XXXXXXXX 

LONG        -4 209.7208861 100 XXXXXXXX 

LAT            -5 3.295807712 1.571520974  

LONG        -5 11.58984257 5.526317757  

LAT            -6 27.6936458 13.20500133 XXXXXXXX 

LONG        -6 26.83444008 12.79531123 XXXXXXXX 

LAT            -7 -7.885394062 3.759946951  

LONG        -7 -3.227892501 1.539137356  

LAT            -8 0.141804765 0.067615948  

LONG        -8 -0.989335122 0.471738957  

LONG        -9 0.216113417 0.103048114  

LAT            -9 -1.137847147 0.54255309  

LONG        -10 -3.858448157 1.839801571  

LAT            -10 5.574700101 2.658152082  

 

Table 3.7: Variances Used In Compatibility Test On Variance Ratio 

EPOCH VARIANCE 

1 2.12278372568915E-09 

2 2.10134107829060E-09 

3 2.14714770853849E-09 

 

The following statistical test applies:  

Test Hypothesis 𝐻0 :  E {𝜎̂01

2 } = E {𝜎̂02

2 },  

Alternative Hypothesis 𝐻𝐴:  E {𝜎̂01

2 } ≠ E {𝜎̂02

2 };  

Test Statistic:𝑇𝐹 =  
𝜎̂01

2

𝜎̂02
2  ;  

If the Test Statistic 𝑇𝐹   fits the FISHER –Distribution,  

𝑇𝐹 ≤ 𝐹𝑆,𝑓1𝑓2
, then the test passes. 

Note that S= 1 - 𝛼 2⁄ ; 𝛼 = chosen confidence level for the test;  

𝑓1 = network redundancy for epoch 1; 𝑓2 = network redundancy epoch 2. 
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Define the test statistics as follows: 𝑇𝒋𝒌 Test statistics for difference between 

epoch j and k 

𝑇12 being the test covering epoch 1 and 2 = 1.010204268 

𝑇13 being the test covering epoch 1 and 3 = 1.011477374 

The FISHER –Distribution 𝐹0.975,19 19  = 2.532 

Since 𝑇12 < 2.532 and 𝑇13 < 2.532 at a significance level of 5%, the test passes 

for both variances because the null Hypothesis 𝐻0 cannot be rejected. A 

deformation analysis of the two epochs can be performed. 

Table 3.8: Two Dimensional Network Adjustment Summary 
PARAMETERS 

 
EPOCH 1 EPOCH 2 EPOCH 3 

Zigmasq  

  

2.122783725E-09 2.101341078E-09 2.147147708E-09 

Parameters trace(Zigmaxa) 1.43E-38 1.32193E-38 1.33E-38 

Observation trace(Zigmala1) 7.98E-42 7.31619E-42 7.43E-42 

no of station 10 10 10 

no of observation 78 78 78 

no of parameters 20 20 20 

degree of freedom 58 58 58 

convergence limit 0.00001 0.00001 0.00001 

quardratic form epoch 1-epoch 2 
 

  
 

common variance (1-2)/(1-3)/(2-3) 2.112062401e-009  2.134965717e-009 2.124244393e-009 

 

 
Figure 3.1: Osun Dams Network Plotting And Error Ellipse 
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Figure 3.2: Relative Absolute Error Ellipse 

 
Table 3.9: Local and Global Test Results 

 

Test 

Statistics    

TL  

Test 

Statistics 

Global  TG  

TG after S 

Transformation  

Epc 1 -- Epc 2  1.010204  0.426528699  0.032334  

Epoch 1 -- 

Epoch 3  1.011477  0.40733953  0.027285  

 
Table 3.10: Average Displacement of Dam Object Points (Against Fisher’s Value) 

Epoch   Difference 

AVERAGE 

DISPLACEMENT(m) 

F (0.05, 20,38)  

>>>> F = 1.858 

DAM  1  -  EDE 0.967298216 < 1.858 stable 

DAM  2  -  

OWALLA 0.933869438 < 1.858 stable 

DAM  3  -  EKO 

ENDE 1.268966977 < 1.858 stable 

DAM  4  -  ESA  

ODO 1.953928041 > 1.858     not stable 

DAM  5  -  EJIGBO 1.091601178 < 1.858 stable 

DAM  6  -  IWO 1.254057903 < 1.858 stable 

DAM  7  -  ILESHA 0.577310554 <  1.858 stable 
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Figure 3.4: Graph Of Displacement Per Dam 

 

4.0 Conclusion and Recommendation 

The principle of least squares observation equation was employed to give 

statistically precise results. From the fore going, seven unknown (DAM-

position) stations were computed in a single adjustment process to give adjusted 

results and corresponding cofactor matrices. This is an indication that the 

behavior of each object point could be monitored after every observation 

campaign covering all the dams. Once an object point is found to be statistically 

unfit or displaced, a more rigorous observation campaign could then be focused 

on such a dam, and the deformation status would be geodetically ascertained 

was used in epoch to epoch consideration in further studies of possible 

deformation on the object points.   

Table 4 summarizes that a matrix 78x20 was solved in the least squares 

adjustment. The trace of the observation and parameters indicate strength which 

gives credibility to the network in the study. This was made possible because 

ill conditioned angles were not included in the final adjustment. Consistency of 

input data and the dependability of the output figures which are expected to be 

injected into the deformation analysis platform confirm the strength of the 

network. It is evident that Dam 2 and Dam 4 need to be geodetically examined 

further. Dams 5, 6, and 7 also need some further scientific observations. Point 

8 (FGP-027) being a stable reference pillar for the work, was not considered 

disturbed.  

Programs were written in MATLAB environment to solve the large matrices 

involved in the algorithm.  It is hereby advised that the whole network could be 
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re computed using Bowring formulas and compare the results with the ones 

published in this paper. 

Acknowledgement: Management, Staff & Dam Workers of Osun State Water 

Corporation, Abere. Osun State Nigeria. 
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